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ROUGHLY Jd-CONVEX FUNCTIONS ON
UNDIRECTED TREE NETWORKS

Daniela Marian

Abstract. In this paper we establish some properties of roughly
d-convex functions on undirected tree networks. It is pointed out that
these roughly d-convex functions have the following properties concern-
ing the property of minimum: each local minimum of a midpoint §-d-
convex or lightly «y-d-convex function is a global minimum, where a local
minimizer has to yield the minimal function value in its neighborhood
with radius equal to the roughness degree. Since every p-d-convex or
é-d-convex function is midpoint é-d-convex and every -y-d-convex func-
tion is lightly -y-d-convex, this conclusion holds for them, too. We also
state weaker but sufficient conditions for roughly d-convex functions. We
adopt the definition of network as metric space introduced by Dearing
P.M. and Francis R.L. in 1974.

1. Introduction

We recall first the definitions of undirected networks as metric space
introduced in [1] by Dearing and Francis.

We consider an undirected, connected graph G = (W, A), without loops
or multiple edges. To each vertex w; € W = {wy, ..., wm } we associate a point
v; from an euclidian space X. This yields a finite subset V = {vq,...,um}
of X, called the vertex set of the network. We also associate to each edge
(wi,w;) € A a rectifiable arc [v;,v;] C X called edge of the network. We
assume that any two edges have no interior common points. Consider that
[vi,v;] has the positive length I;; and denote by U the set of all edges. We
define the network N = (V,U) by

N = {z € X | 3(wi,w;) € A such that z € [v;,v;]}.
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It is obvious that V is a geometric image of G, which follows naturally
from an embedding of G in X. Suppose that for each [v;,v;] € U there is a
continuous one-to-one mapping 6;; : [v;,v;] — [0, 1] with 8;; (v;) = 0,0;; (v;) =
1, and 6,5 ([v;,v;]) = [0,1]. We denote by T;; the inverse function of ;.

Any connected and closed subset of an edge bounded by two points z
and y of [v;,v;] is called a closed subedge and is denoted by [z,y]. If one
or both of z,y are missing we say than the subedge is open in z, or in y or is
open and we denote this by (z,y] , [z,y) or (z,y), respectively. Using 8;;, it
is possible to compute the length of [z,y] as

L([z,y]) = 1055 (z) — 635 ()] - Lij-
Particularly we have
Lo, vi]) = b, 1([vi, 7)) = 045 (2) b
and
L([z,v]) = (1 = 635 () L5

A path L(z,y) linking two points z and y in N is a sequence of edges
and at most two subedges at extremities, starting at z and ending at y. If
z = y then the path is called cycle. The length of a path (cycle) is the sum
of the lengths of all its component edges and subedges and will be denoted

by I(L (z,y))-

A network is connected if for any points z,y € N there is a path
L(z,y) CN.

A connected network without cycles is called tree.

Let L* (z,y) be a shortest path between the points z,y € N. This path
is also called geodesic.

Definition 1. [1]For any z,y € N, the distance from z to y, d(z,y)
in the network N 1is the length of a shortest path from x to y:

d(z,y) =1(L" (z,y)).

It is obvious that (N, d) is a metric space.
For z,y € N, we denote

(1) {@,y) = {2 € N | d(z,2) + d(2,9) = d(z,9)},
and (z,y) is called the metric segment between z and y.

Definition 2. [1] A set D C N is called d-convez if (z,y) C D for all
rz,y €D.
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Roughly d-convex functions are a generalization of roughly convex func-
tions and respective of d-convex functions proposed by V. P. Soltan and P. S.
Soltan in [14]. We recall that there is several kinds of roughly convex funec-
tions: p-convex functions, proposed by Klotzler and investigated by Hartwig
and Sollner in [2], [13], é-convex and midpoint d-convex functions established
by Hu, Klee, Larman in [3] and -y-convex, strictly y-convex, lightly y-convex,
midpoint 7-convex, strictly r-convexlike functions, proposed and investigated
by Phu in [6], [7], [8], [9], [10], [11] etc.

In the following lines we consider a network N = (V,U) endowed with
the metric defined in Definition 1. We denote R= R U {+c0}.

Definition 3. [14] The function f : N — R is called d-convex on N
if for any pair of points z,y € N,z # y, and for every z € (z,y) is satisfied
the inequality

d(z,y) d(x,2)
Extending Phu’s observation at this function, we remark in [5] that the
inequality (2) can be satisfied just for the points z,y € N with d(z,y) > r,
r being a fixed positive real number convenient selected.
We consider the positive real numbers r,,75,7,,7 and a d-convex set
DCN.
Definition 4. [5]|The function f : D — R is called:

1. p-d-convex on D with the roughness degree 7, if for any pair of points
z,y € D with d(z,y) > r,, is satisfied the inequality (2) for all z €
(z,y);

2. §-d-convex on D with the roughness degree 75 if for any pair of points
z,y € D with d(z,y) > rs, is satisfied the inequality (2) for all z € (z,y)
with d (z, 2) > r5/2, and d(z,y) > r5/2;

3. midpoint §-d-convex on D with the roughness degree rs if for any
pair of points z,y € D with d(z,y) > rs, is satisfied the inequality (2)
for all z € (z,y) with d(z, z) = d(z,y) = d(z,y) /2;

4. y-d-convex on D with the roughness degree r, if for any pair of points
x,y € D with d(x,y) > r,, is satisfied the inequality

3) 7))+ (¥) < f@+10w)

for all pair of points ',y € (z,y) with d (:c, :1:’) =d (y,y') =T
5. lightly 7-d-convex on D with the roughness degree r, if for any pair

of points z,y € D with d(z,y) > r,, is satisfied the inequality (2) for
all z € (z,y) with d(z,2) =, or for all z € (z,y) with d(z,y) =ry;
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6. midpoint -y-d-convex on D with the roughness degree r, if for any
pair of points z,y € D with d (z,y) = 2r,, is satisfied the inequality (2)
for all z € (z,y) with d(z,2) = d(z,y) =ry;

7. strictly y-d-convex on D with the roughness degree r, if for any pair
of points z,y € D with d(z,y) > r,, is satisfied the inequality

(4) FE)+1(y) < f@)+fw),

for all pair of points z',y € (x,y) with d (m, x') =d (y, y') =Ty
8. strictly r-d-convexlike (or strictly roughly d-convexlike) on D

with the roughness degree r if for any pair of points z,y € D with
d(z,y) > r there is z € {(z,y),2z # z,z # y such that is satisfied the

inequality:
d(2,v) d(x,z)
5) )< g @ gl @

The functions who satisfy one of the conditions (1)-(8) are called roughly
d-convex.

We compared this kinds of roughly convex functions and we got the
following scheme for the relation between them:

Theorem 1. [5/Between some different kinds of roughly d-convez fun-
ctions there is the following relations:

Vr,>0 < f midpoint
f d-convez = f p-d-conver =" f §-d-conter = 5-d-conver
Jrp,<ry I rs =2r,
i o
f y-d-convez f Lghtly [ midpoint
v-d-convez Y¥-d-convex

2. Some properties of roughly d-convex functions on tree net-
works

We consider now a tree network N = (V,U) and a d-convex set D C N.
We recall that in a tree network the metric segment (z,y) contain an unique
path between z and y, for every z,y € N.
Definition 5. We say that the function f : D — R attains a r-local
minimum at a point z* € D if
f(z) > f(z*) for all x € D satisfying d(z,y) <.

Theorem 2. [5] If f: D — R is a midpoint §-d-convez function with
the roughness degree 15 > 0, z* € D and

(6) f(z) 2 f(2")
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for all z € Uy (z*) := {z € D|d(z* 2) <75}, then f(z) > f(z*) for all
z € D (f attains its global minimum in D at z*).

Remark. Since p-d-convexity and é-d-convexity imply midpoint J-d-
convexity, p-d-convex functions and d-d-convex functions have this property,
too.

Theorem 3. If f : D — R is a lightly v-d-convex function with the
roughness degree o, > 0, z* € D and

OENICS
for all x € U, (2*) := {z € D |d(z*,2z) <75}, then f(z) > f(z*) for all
z € D (f attains its global minimum in D at z*).

Proof. Assume the contrary that f does not attains its global minimum
at z*, then there is g € D\U,, (z*) such that f(z*) > f(zo). We consider
now the points s,z; € (zg,z*) such that

d(z*,s) =7, and d(z1,z0) =7,.
Since f(zo) < f(z*) < f(s), the definition of lightly v-d-convexity imply
d(zo,z1) ,, .« . d(z1,2%) .
< —= _— < .
fl) S G @)+ g f @) < 5(a)

We repeat this construction, and we get z;,i € I C N, with f (z*) >
f (z;) for all 4 € I. Since d(z;,2*) = d(zi_1,2*) — ., there is ¢* € I such that
d (zs,2*) < rs and hence for z;« we have f (z;+) > f(z*), which contradicts
the relation f(z*) > f(x;) for all ¢ € I. This contradiction completes our
proof.

Remark. Since every «y-d-convex function is lightly ~-d-convex, this
conclusion holds for y-d-convex functions, too.

In the following line we will establish weaker but sufficient conditions
for roughly d-convex functions f : D — R, where D is a d-convex subset of a
tree network N = (V,U).

We consider a tree network N = (V,U) and a d-convex set D C N.

Theorem 4. [5/The function f : D — R is y-d-conver on D with the
roughness degree v, > 0 if and only if there is a 0 > 0 such that

(7) @) +r(V)<f@+1w)
is satisfied for any pair of points x,y € D with
ry<d(z,y) <ry+o

and for ',y € (z,y) with d (a:, m') ='d (y,y') =7,.
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Theorem 5. The function f : D — R is midpoint 8-d-convez on D
with the roughness degree Ty > 0 if and only if the inequality (2) is satisfied
for z € (z,y) with d(z, 2) = d(z,y) = d(z,y)/2, for any pair of points z,y € D
satisfying

rs < d(z,y) < 2r;s.

Proof. It is clear that we only need to prove the sufficiency. This is
done by induction. We are going to show that (2) holds for any pair of points
z,y € D satisfying

rs < d(z,y) < 2rs,i=1,2,...
and for z € (z,y) with d(z,2) = d(z,y) = d(z,y)/2.

By assumption, it holds for i = 1. We assume now that the assertion is
true for some n € N. Let z,y be a pair of points in D with

2"rs < d(zx,y) < 2" rs.

We denote by zi, 29, z3 the points from (z,y) such that

d(z,z1) = d(21, 22) = d(22, 23) = d(23,y) = d(z,y)/4

Then
rs < d(z,z) = d(23,21) = d(y, 22) < 2"75
implies
flz1) < (1/2)f(z) + (1/2) f(22)
2f(z2) < f(z1) + f(z3)
flz2) < (1/2)f(22) + (1/2)f(y)-

By addition of these three inequalities we get
fz2) < (1/2)f(z) + (1/2) £ (y).

Hence the assertion also holds for this pair of points z,y € D.
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